Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1934132

ABSTRACT

Boesenbergia rotunda (Zingiberaceae), is a high-value culinary and ethno-medicinal plant of Southeast Asia. The rhizomes of this herb have a high flavanone and chalcone content. Here we report the genome analysis of B. rotunda together with a complete genome sequence as a hybrid assembly. B. rotunda has an estimated genome size of 2.4 Gb which is assembled as 27,491 contigs with an N50 size of 12.386 Mb. The highly heterozygous genome encodes 71,072 protein-coding genes and has a 72% repeat content, with class I TEs occupying ~67% of the assembled genome. Fluorescence in situ hybridization of the 18 chromosome pairs at the metaphase showed six sites of 45S rDNA and two sites of 5S rDNA. An SSR analysis identified 238,441 gSSRs and 4604 EST-SSRs with 49 SSR markers common among related species. Genome-wide methylation percentages ranged from 73% CpG, 36% CHG and 34% CHH in the leaf to 53% CpG, 18% CHG and 25% CHH in the embryogenic callus. Panduratin A biosynthetic unigenes were most highly expressed in the watery callus. B rotunda has a relatively large genome with a high heterozygosity and TE content. This assembly and data (PRJNA71294) comprise a source for further research on the functional genomics of B. rotunda, the evolution of the ginger plant family and the potential genetic selection or improvement of gingers.


Subject(s)
Ginger , Zingiberaceae , Biosynthetic Pathways , DNA, Ribosomal , Flavonoids , Ginger/genetics , In Situ Hybridization, Fluorescence , Microsatellite Repeats/genetics , Zingiberaceae/genetics
2.
PLoS One ; 16(8): e0255140, 2021.
Article in English | MEDLINE | ID: covidwho-1372003

ABSTRACT

Y-chromosome analysis provides valuable information regarding the migration patterns of male ancestors, ranging from the Paleolithic age to the modern humans. STR and SNP genotyping analysis provides data regarding the genetic and geographical ancestry of the populations studied. This study focused on the analysis of the Y-chromosome in Maronite Cypriots and Armenian Cypriots, who came to the island as a result of different historical events. The aim was to provide information on the paternal genetic ancestry of Maronites and Armenians of Cyprus and investigate any affinity with the Greek Cypriots and Turkish Cypriots of the island. Since there is limited information in the current literature, we proceeded and used 23 Y-chromosome STRs and 28 Y-chromosome SNPs to genotype 57 Maronite Cypriots and 56 Armenian Cypriots, which were then compared to data from 344 Greek Cypriots and 380 Turkish Cypriots. All samples were assigned to eight major Y-haplogroups but the most frequent haplogroup among all Cypriots is haplogroup J in the major subclade J2a-L559. The calculated pairwise genetic distances between the populations show that Armenian Cypriots are genetically closer to Greek and Turkish Cypriots compared to Maronite Cypriots. Median Joining Network analysis in 17 Y-STR haplotypes of all Cypriots assigned to J2a-L559, revealed that Cypriots share a common paternal ancestor, prior to the migration of the Armenians and Maronites to Cyprus, estimated in the Late Bronze Age and Early Iron Age.


Subject(s)
Chromosomes, Human, Y/genetics , Human Migration , Cyprus , Genetics, Population , Geography , Haplotypes/genetics , Humans , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide/genetics , Time Factors
3.
J Med Virol ; 93(7): 4382-4391, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263102

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spread around the globe very rapidly. Previously, the evolution pattern and similarity among the COVID-19 causative organism severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and causative organisms of other similar infections have been determined using a single type of genetic marker in different studies. Herein, the SARS-CoV-2 and related ß coronaviruses Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV,  bat coronavirus (BAT-CoV) were comprehensively analyzed using a custom-built pipeline that employed phylogenetic approaches based on multiple types of genetic markers including the whole genome sequences, mutations in nucleotide sequences, mutations in protein sequences, and microsatellites. The whole-genome sequence-based phylogeny revealed that the strains of SARS-CoV-2 are more similar to the BAT-CoV strains. The mutational analysis showed that on average MERS-CoV and BAT-CoV genomes differed at 134.21 and 136.72 sites, respectively, whereas the SARS-CoV genome differed at 26.64 sites from the reference genome of SARS-CoV-2. Furthermore, the microsatellite analysis highlighted a relatively higher number of average microsatellites for MERS-CoV and SARS-CoV-2 (106.8 and 107, respectively), and a lower number for SARS-CoV and BAT-CoV (95.8 and 98.5, respectively). Collectively, the analysis of multiple genetic markers of selected ß viral genomes revealed that the newly born SARS-COV-2 is closely related to BAT-CoV, whereas, MERS-CoV is more distinct from the SARS-CoV-2 than BAT-CoV and SARS-CoV.


Subject(s)
Alphacoronavirus/genetics , Genome, Viral/genetics , Microsatellite Repeats/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Animals , Base Sequence/genetics , Chiroptera/virology , DNA Mutational Analysis , Genetic Markers/genetics , Genetic Variation/genetics , Humans , Phylogeny , Sequence Alignment , Sequence Homology, Nucleic Acid , Whole Genome Sequencing
4.
Chem Biol Interact ; 331: 109226, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-778555

ABSTRACT

Presence of Simple Sequence Repeats (SSRs), both in genic and intergenic regions, have been widely studied in eukaryotes, prokaryotes, and viruses. In the current study, we undertook a survey to analyze the frequency and distribution of microsatellites or SSRs in multiple genomes of Coronaviridae members. We successfully identified 919 SSRs with length ≥12 bp across 55 reference genomes majority of which (838 SSRs) were found abundant in genic regions. The in-silico analysis further identified the preferential abundance of hexameric SSRs than any other size-based motif class. Our analysis shows that the genome size and GC content of the genome had a weak influence on SSR frequency and density. However, we find a positive correlation of SSRs GC content with genomic GC content. We also report relatively low abundances of all theoretically possible 501 repeat motif classes in all the genomes of Coronaviridae. The majority of SSRs were AT-rich. Overall, we see an underrepresentation of SSRs across the genomes of Coronaviridae. Besides, our integrative study highlights the presence of SSRs in ORF1ab (nsp3, nsp4, nsp5A_3CLpro and nsp5B_3CLpro, nsp6, nsp10, nsp12, nsp13, & nsp15 domains), S, ORF3a, ORF7a, N & 3' UTR regions of SARS-CoV-2 and harbours multiple mutations (3'UTR and ORF1ab SSRs serving as major mutational hotspots). This indicates the genic SSRs are under selection pressure against mutations that might alter the reading frame and at the same time responsible for rapid protein evolution. Our preliminary results indicate the significance of the limited repertoire of SSRs in the genomes of Coronaviridae.


Subject(s)
Coronaviridae/genetics , Microsatellite Repeats/genetics , 3' Untranslated Regions , Base Composition , Base Sequence , Betacoronavirus/genetics , Evolution, Molecular , Genome, Viral , Humans , Mutation , Polyproteins , SARS-CoV-2 , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL